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Abstract: With the development of computer vision, attention mechanisms have been widely 

studied. Although the introduction of an attention module into a network model can help to im-

prove e classification performance on remote sensing scene images, the direct introduction of an 

attention module can increase the number of model parameters and amount of calculation, result-

ing in slower model operations. To solve this problem, we carried out the following work. First, a 

channel attention module and spatial attention module were constructed. The input features were 

enhanced through channel attention and spatial attention separately, and the features recalibrated 

by the attention modules were fused to obtain the features with hybrid attention. Then, to reduce 

the increase in parameters caused by the attention module, a group-wise hybrid attention module 

was constructed. The group-wise hybrid attention module divided the input features into four 

groups along the channel dimension, then used the hybrid attention mechanism to enhance the 

features in the channel and spatial dimensions for each group, then fused the features of the four 

groups along the channel dimension. Through the use of the group-wise hybrid attention module, 

the number of parameters and computational burden of the network were greatly reduced, and 

the running time of the network was shortened. Finally, a lightweight convolutional neural net-

work was constructed based on the group-wise hybrid attention (LCNN-GWHA) for remote 

sensing scene image classification. Experiments on four open and challenging remote sensing 

scene datasets demonstrated that the proposed method has great advantages, in terms of classifi-

cation accuracy, even with a very low number of parameters. 

Keywords: remote sensing scene image classification; convolutional neural network (CNN); 

lightweight; hybrid attention; channel attention; spatial attention 

 

1. Introduction 

In recent years, convolutional neural networks (CNNs) have achieved excellent 

performance in many fields [1–7]. In particular, in the field of image classification [8–11], 

convolutional neural networks have become the most commonly used method. The core 

construction element of a convolutional neural network is the convolutional layer. For 

each convolutional layer, a group of filters is learned along the input channel to repre-

sent the local spatial mode, and feature information is extracted by fusing the spatial 

and channel information of the local receptive field. Improving the quality of spatial 

coding of the whole feature level of a convolutional neural network to enhance the rep-

resentation ability of the network is an effective way to improve the performance of the 

network. It has been shown, with VGGNet [12], that increasing the depth of the network 

can significantly improve the performance of the network. ResNet [13] addressed the 
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problem of performance degradation caused by network deepening: it expanded the 

network depth to 150 or even 1000 layers, based on VGGNet, and achieved good per-

formance. InceptionNet [14] divided the input features into four channels, in which dif-

ferent convolution filters were used to adapt to different scales of features. Finally, the 

extracted features were fused along the channel dimension to improve network perfor-

mance by increasing the width of the network. Subsequently, a series of lightweight 

convolutional neural networks were proposed. These networks reduce the complexity of 

the model while also having good feature extraction ability. Xception [15] and Moble-

netV1 [16] introduced depth-wise separable convolution, instead of traditional convolu-

tion, for lightweight networks. Depth-wise separable convolution divides traditional 

convolution into depth-wise convolution and pointwise convolution to reduce the 

number of parameters of the model. MobilenetV2 [17] proved the validity of depthwise 

separable convolution. Grouping convolution also provides a way to improve network 

representation by increasing the width of the network while reducing the computational 

cost of the network. Assuming that g  is used to represent the number of groups, both 

the number of parameters and the calculation cost of grouping convolution are 
1 g

 that 

of traditional convolution. Grouped convolution was first used in AlexNet due to hard-

ware constraints and served to reduce the associated computational costs. By using 

grouped convolution in ResNeXts [18] and increasing the depth and width of the model, 

the classification accuracy was greatly improved. ShuffleNet [19,20] proposed channel 

shuffling, which can alleviate the loss of information due to a lack of information ex-

change between channels caused by grouping after grouping convolution. 

The improvement of network performance by use of an attention mechanism has 

been demonstrated in many tasks. SENet [21] improved the network performance by 

explicitly modeling the dependences between channels. SENet consists of two opera-

tions: squeeze and excitation. The squeeze operation extrudes the features spatially 

through a global average pooling operation to obtain a value with a global receptive 

field. The resulting values from the excitation are obtained through two consecutive ful-

ly connected layers, and the channel attention map is derived from the correlation be-

tween the channels, which is used to recalibrate the features. SKNet [22] added two op-

erations, split and fuse, on the basis of SENet. Split operations employ convolution ker-

nels with different receptive field sizes to capture multiscale semantic information. Fu-

sion operations fuse multiscale semantic information, enhance feature diversity, and ag-

gregate feature maps from different size convolution kernels, according to their weights, 

by use of an SE module. It is also an effective method to improve the performance of the 

network, by explicitly modeling the dependence between channels and spatial infor-

mation. CBAM [23] extracts channel attention and spatial attention through a combina-

tion of global average pooling and maximum pooling. The input features are enhanced 

in space and channel by using spatial attention and channel attention, respectively. Fi-

nally, the enhanced features are fused to improve the performance of the model. Wang 

et al. [24] designed a circular attention structure to reduce advanced semantic and spa-

tial features to reduce the number of learning parameters. Tong et al. [25] introduced an 

attention mechanism into DenseNet to adaptively enhance the weights of important 

feature channels. Yu et al. [26] improved channel attention and proposed a hierarchical 

attention mechanism by combining the improved channel attention with a ResNet net-

work. Alhichri et al. [27] proposed a deep attention convolution neural network to learn 

feature maps from large scene regions. We note that although the introduction of an at-

tention module to a network can help to improve the network performance, adding an 

attention mechanism directly to the network increases the amount of network parame-

ters and required calculations, thus reducing the running speed of the model. To solve 

this problem, we first constructed a new channel attention and spatial attention module 

to recalibrate the features. The channel attention sets the channel compression ratio of 

the SE module to 1/4 and replaces the fully connected layer with 1 × 1 convolution. We 
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compressed the input features using a 5 × 5 × 1 convolution kernel and achieved spatial 

attention by using the Sigmoid activation function for the compressed features. Next, we 

propose a group-wise hybrid attention method, which groups input features and intro-

duces hybrid attention to each group. Each group is re-calibrated using the spatial atten-

tion and channel attention, respectively, and the recalibrated features are fused. 

The main contributions of this study are as follows: 

(1) Based on the SE module, we propose a channel attention module which is more 

suitable for remote sensing scene image classification. In the proposed method, the 

channel compression ratio is set to 1/4, and a 1 × 1 convolution kernel is adopted in-

stead of a fully connected layer. The 1 × 1 convolution does not destroy the spatial 

structure of the features, and the size of the input features can be arbitrary. 

(2) We propose a spatial attention module with a simpler implementation process. 

Channels are compressed using a 5 × 5 × 1 convolution kernel directly, and spatial 

attention features are obtained using the Sigmoid activation function. The convolu-

tion kernel of 5 × 5 is helpful in providing a large receptive field, which can extract 

more spatial features. 

(3) A hybrid attention model is constructed by combining channel attention and spatial 

attention in parallel, which has higher activation and can learn more meaningful 

features. 

(4) To alleviate the problem that the introduction of attention leads to an increased 

number of parameters, we further propose a group-wise hybrid attention module. 

This module first divides input features into four groups in the channel dimension, 

then introduces hybrid attention to each group. Each group is recalibrated sepa-

rately with spatial attention and channel attention and, finally, the rescaled features 

are fused in the channel dimension. Moreover, a lightweight convolutional neural 

network is constructed based on group-wise hybrid attention (LCNN-GWHA), 

which is shown to be an effective method for remote sensing scene image classifica-

tion. 

The remainder of this paper is structured as follows. In Section 2, the channel atten-

tion, spatial attention, hybrid attention, group-wise hybrid attention, and the proposed 

LCNN-GWHA method are described in detail. In Section 3, experiments and analyses 

are carried out, including a comparison with some state-of-the-art methods, in order to 

demonstrate the superior performance of the proposed method. In Section 4, the feature 

extraction ability of the proposed LCNN-GWHA method is evaluated by visualization. 

The conclusion of this paper is given in Section 5. 

2. Methods 

2.1. Traditional Convolution Process 

Assuming that the input feature is 'H W CX   , the output feature H W CY    is 

obtained by the convolution operation ( )F  , as shown in Figure 1. The set of convolution 

kernels is represented by 1 2[ , ,..., ]CU u u u
, where Cu

 represents the c th convolution 

kernel. Then, the features of the c th channel of the output, 1 2[ , ,..., ]CY y y y
, can be 

represented as: 

'

1

C
i i

C C C
i

y u X u x


     (1)

where   represents the convolution operation, 
'1 2[ , ,..., ]C

C C C Cu u u u
, 

'1 2[ , ,..., ]CX x x x
, 

i
Cu

 represents the i th channel of the c th convolution kernel, 
ix  represents the i  th 

channel of the input feature, and 
i i
Cu x  represents the spatial features learned from the 
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i  th channel. 

'

1

C
i i
C

i

u x



 means summing the spatial features learned by all channels 

through convolution, such that the final output feature Cy
 includes both channel fea-

tures and spatial features. Channel attention and spatial attention can be obtained by 

modeling the correlations between different channels and different spatial correlations, 

respectively. 

X Y( ) :F X Y 

 

Figure 1. Features obtained by traditional convolution. 

2.2. Channel Attention 

Channel attention first obtains the feature 1 1 CM    by spatially compressing the 

input features, then convolutes the compressed feature 1 1 CM    to model the corre-

lation among the different channels. Channel attention assigns different weight coeffi-

cients to each channel to enhance important features and suppress unimportant features. 

The process of channel attention is shown in Figure 2.  

1 1 C 

C

H

W

1 1 C 

H

W
C

( )R 

( )R  Relu Sigmoid

41 1
C




1 1
4

C
 

1 1
C



p
i j


 Convolution with           kernel     channels Element-wise product( ) 

( ) 

i j p

Channel attention 
feature map

X X


 

Figure 2. Channel Attention Module. 

Suppose the input feature is 1 2[ , ,..., ]CX x x x , where 
H W C

ix  
 
represents the 

feature of the i th channel. The input feature 1 2[ , ,..., ]CX x x x  is spatially compressed 

by global average pooling to obtain the feature 1 1 CM   , and the result iM  for the i  

th channel feature can be represented as 

=1 =1

1
( , )

H W

i i
m n

M x m n
H W



  (2)

where, H  and W  represent the height and width of feature ix , respectively. The 

feature 1 1 CM    compressed by global average pooling, can reflect global spatial in-

formation. Then, the feature 1 1 CM   , with the global receptive field, is subjected to 

two continuous 1 × 1 convolution operations to obtain 2 1( ( ))C CM W R W M


, where 
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4
1

C
C

W



 

and 4
2

C
C

W


  are the weights of the first and second 1 × 1 convolutions, 

respectively, and ( )R   represents the activation function Relu . The first 1 × 1 convolu-

tion has the function of dimension reduction, which reduces the number of feature 

channels to one quarter of the original number of channels, and then the nonlinear rela-

tionship between channels is increased by Relu . The second convolution restores the 

number of channels, normalizes the learned activation values of each channel into the 

range [0, 1] through the Sigmoid activation function and obtains the channel attention 

feature ( )M


, where ( )   represents the Sigmoid activation function. Finally, the in-

put feature 1 2[ , ,..., ]CX x x x  is recalibrated through the channel attention feature, 

( )M


, to obtain X


: 

1 1 2 2[ ( ) , ( ) ,..., ( ) ]C CX M x M x M x  
   

 (3)

where, ( )iM


 represents the importance of the i  th channel. These activation values 

can be adaptively adjusted by the convolutional neural network. The channel attention 

module can enhance important features and suppress unimportant features. 

2.3. Spatial Attention 

Spatial attention first squeezes the channel to obtain the feature 1H WM  

 . Then, 

different weight coefficients are assigned to different locations of the compressed feature 
1H WM  


 , through an activation function which enhances the target areas of interest 

and suppresses the unimportant areas. The process of spatial attention is depicted in 

Figure 3. Assuming that the input feature is 1,1 1,2 , ,[ , , ..., , ..., ]m n H WX x x x x , , 1 1m n Cx     

represents the feature at the corresponding spatial location ( , )m n , where {1, 2, ..., }m H  

and {1, 2,..., }n W , and the convolution kernel is 5 5 1C
sqf    . The calculation process 

of feature 1H WM  

  after channel compression is:  

sqM f X 


 (4)

where 
1,1, 1,2 , ,, ,..., ,...,m n H WM M M M M  

    
 and , 1 1 1m nM  


  represents the linear com-

bination of all channels at spatial position ( , )m n . Then, the Sigmoid activation function 

    is used to normalize it into the range  0,1  to obtain the spatial attention feature 

,( )m nM


. Finally, the input feature 1,1 1,2 , ,[ , , ..., , ..., ]m n H WX x x x x  is recalibrated through 

the spatial attention feature ,( )m nM


 to obtain X


; that is: 

1,1 1,1 1,2 1,2 , , , ,[ ( ) , ( ) ,..., ( ) ,..., ( ) ]m n m n H W H WX M x M x M x M x   
    

 (5)

where ,( )m nM


 represents the importance at the spatial position ( , )m n  of the feature. 

This enhances the importance of regions of interest and suppresses unimportant spatial 

locations. 
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Figure 3. Spatial Attention Module. 

2.4. Group-Wise Hybrid Attention 

Spatial attention ignores the information interaction between channels, while chan-

nel attention ignores the information interaction in the spatial dimension. To solve this 

problem, hybrid attention is proposed. The output feature X


 of the spatial attention 

module and the output feature X


 of the channel attention module are fused to obtain 

the feature X , which is calibrated in space and channel respectively. ,( )m n
ip  is used to 

represent the importance of the i  th channel at the spatial position ( , )m n . 

The addition of hybrid attention to the network can improve the network perfor-

mance, but inevitably increases the computational cost of the network and reduces the 

running speed of the model. Therefore, grouping convolution was designed to extract 

features more efficiently based on an attention mechanism, as shown in Figure 4. As-

suming that the input features are 1,1 1,2 , ,
1 1[ , , ..., , ..., ]m n H W

i CX x x x x , first, the input features 

are grouped along the channel dimension to obtain 1,1 1,2 , ,
1 1 1

4

[ , ,..., ,..., ]m n H W
i CX x x x x , 

1,1 1,2 , ,
2

4 4 2

[ , ,..., ,..., ]m n H W
C C i CX x x x x , 1,1 1,2 , ,

3 3

2 2 4

[ , ,..., , ..., ]m n H W
C C i CX x x x x  and 

1,1 1,2 , ,
4 3 3

4 4

[ , ,..., ,..., ]m n H W
C C i CX x x x x . Then, for the four grouped features 1X , 2X , 3X  and 

4X , channel attention and spatial attention are utilized to calibrate the features, respec-

tively, and the enhanced results 1X , 2X , 3X  and 4X  are obtained. The specific pro-

cess is as follow. When the grouped feature is 1,1 1,2 , ,
1 1 1

4

[ , ,..., ,..., ]m n H W
i CX x x x x , where ,m n

ix  

represents the feature with spatial position (m, n) in the i  th channel, the result for 1X  

after applying the hybrid attention is shown in formula (6). In formula (6), , ,( )m n m n
i ip x  

represents the result of feature enhancement of each feature ,m n
ix  in 1X  in the spatial 

and channel dimensions, respectively. 

1,1 1,1 1,2 1,2 , , , ,
1 1 1 1 1

4 4

[ ( ) , ( ) ,..., ( ) ,..., ( ) ]m n m n H W H W
i i C CX p x p x p x p x   

 
(6)

When the grouped feature is 

1,1 1,2 , ,
2

4 4 2

[ , ,..., ,..., ]m n H W
C C i CX x x x x

, the result of 2X
 after 

hybrid attention is shown in formula (7). In formula (7), 
, ,( )m n m n

i ip x represents the en-

hanced result of each feature 
,m n

ix  in 2X
 in the spatial and channel dimensions, re-

spectively. 
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1,1 1,1 1,2 1,2 , , , ,
2

4 4 4 4 2 2

[ ( ) , ( ) ,..., ( ) ,..., ( ) ]m n m n H W H W
C C C C i i C CX p x p x p x p x   

 
(7)

When the grouped feature is 

1,1 1,2 , ,
3 3

2 2 4

[ , ,..., ,..., ]m n H W
C C i CX x x x x

, the result of 3X
 after 

hybrid attention is shown in formula (8). In formula (8), 
, ,( )m n m n

i ip x  represents the re-

sult of feature enhancement of each feature 
,m n

ix  in 3X
 in the spatial and channel di-

mensions, respectively. 

1,1 1,1 1,2 1,2 , , , ,
3 3 3

2 2 2 2 4 4

[ ( ) , ( ) ,..., ( ) ,..., ( ) ]m n m n H W H W
C C C C i i C CX p x p x p x p x   

 
(8)

When the grouped feature is 

1,1 1,2 , ,
4 3 3

4 4

[ , ,..., ,..., ]m n H W
C C i CX x x x x

, the result of 4X
 after 

hybrid attention is shown in formula (9). In formula (9), 
, ,( )m n m n

i ip x  represents the re-

sult of feature enhancement for each feature 
,m n

ix  in 4X
 in the spatial and channel di-

mensions, respectively. 

1,1 1,1 1,2 1,2 , , , ,
4 3 3 3 3

4 4 4 4

[ ( ) , ( ) ,..., ( ) ,..., ( ) ]m n m n H W H W
C C i i C C

C C
X p x p x p x p x     (9)

Finally, the enhanced features 1X
, 2X

, 3X
, and 4X

 are fused along the channel 

direction to obtain the output feature Y , as shown in formula (10). In formula (10),   

represents feature fusion along the channel dimension. 

1 2 3 4Y X X X X        (10)

Input

H

1X

2X

3X

4X

C

W

X


X


X

X

X
 X

X


X


X

X


X


X

Output

H
W

C

hannel Attention ModuleC patial Attention ModuleS lement-wise SummationE  

Figure 4. Group-wise hybrid attention module (GWHAM). W, H,and C are the width, height and 

number of channels of the feature, respectively. X


 and X


 are the output features of channel 

attention and spatial attention, respectively. X  is the hybrid attention feature after fusion. 
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2.5. Lightweight Convolution Neural Network Based on Group-Wise Hybrid Attention 

(LCNN-GWHA) 

The structure of the proposed lightweight modular LCNN-GWHA method is 

shown in Figure 5. The structure is mainly composed of convolution, the group-wise 

hybrid attention module, a global average pooling layer, and the classifier. First, the 

shallow feature information is extracted through two consecutive convolution opera-

tions and then the deeper features are extracted through six group-wise hybrid attention 

modules (GWHAM). The output features of the last convolution are mapped to each 

category using global average pooling (GAP). The use of global average pooling does 

not increase the weight parameters and can effectively avoid the over-fitting phenome-

non in the training process. Finally, the softmax function classifier is adopted to classify 

the features.  

C
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Figure 5. Overall flowchart of the proposed LCNN-GWHA method. (GWHAM refers to the 

group-wise hybrid attention modules, and GAP denotes global average pooling). 

If a fully connected layer (FC) with the classification number n  is used to classify 

the average pooled output result ig G , and the classification result is 

1 2[ , ,..., ,..., ] ( )i N iQ q q q q FC g  , the output result 1 2[ , ,..., ,..., ]i NS s s s s  from softmax can 

be represented as: 

[ 1]

1 [ ]

0

Q i

i N Q k

k

e
s

e








  

(11)

where iQ
 represents the i -th element in Q  (the index starts from 0). Cross-entropy 

is adopted as the loss function. Assuming that 1 2[ , ,..., ,..., ]i NT t t t t
 represents the en-

coding result of the input sample label. Then, the loss function can be represented as: 

1

log( )
N

i i
i

L t s


   (12)

where N  represents the number of categories, is  represents the output result of 

Softmax, and the input sample label adopts the one-hot coding rule. 

3. Experiments 

In this section, some evaluation indicators are adopted to evaluate the proposed 

LCNN-GWHA method. The proposed LCNN-GWHA method was compared with var-

ious state-of-the-art methods on four challenging datasets. To make a fair comparison, 

both the proposed method and those methods used for comparison were carried out 
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under the same experimental environment and super parameters. The experimental re-

sults indicate that the proposed method can classify remote sensing scene images more 

accurately and has obvious advantages in terms of parameter quantity and running 

speed. 

3.1. Dataset Settings 

Experiments were performed on four commonly used datasets: UCM21 [28], 

RSSCN7 [29], AID [30], and NWPU45 [31]. In Table 1, the number of images per catego-

ry, the number of scene categories, the total number of images, the spatial resolution of 

images, and the size of images in the four datasets are listed. To avoid memory overflow 

during the training process, bilinear interpolation was used to resize the input images to 

256 × 256. 

Table 1. Description of four datasets. 

Datasets 

Number of 

Images Per 

Class 

Number of 

Classes 

Total Number 

of Images 

Spatial Reso-

lution(m) 
Image Size 

UCM21 100 21 2100 0.3 256 × 256 

RSSCN7 400 7 2800 - 400 × 400 

AID 200–400 30 10,000 0.5–0.8 600 × 600 

NWPU45 700 45 31,500 0.2–30 256 × 256 

3.2. Setting of the Experiments 

The stratified sampling method was adopted to divide the datasets to avoid the risk 

of sampling bias. In addition, so that the proposed method and the compared method 

used the same training samples, random seeds were set during the division of training 

and test samples. For the UCM21 [28] dataset, the training proportion was set to 80%; For 

the RSSCN7 [29] dataset, the training proportion was set to 50%; For the AID [30] dataset, 

the training proportions were set to 20% and 50%, respectively. Finally, for the NWPU45 

[31] dataset, the training proportions were set to 10% and 20%, respectively. The param-

eters and equipment configuration used in the experiments are listed in Table 2, while 

the training parameters used for the proposed LCNN-GWHA method are given in Table 

3. 

Table 2. Experimental environment and parameter settings. 

Item Contents 

Processor 
AMD Ryzen 7 4800 H with Radeon Graphics@2.90 

GHz 

Memory 16 GB 

Operating system Windows10 

Solid state hard disk 512 GB 

Software PyCharm Community Edition 2020.3.2 

GPU NVIDIA GeForce RTX2060 6 GB 

Keras v2.2.5 

Initial study rate 0.01 

Momentum 0.9 
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Table 3. Training Parameters for Proposed LCNN-GWHA Methods. 

Input Operator 
Repeated 

Times 
Stride 

Output 

Channels 
Output 

256 × 256 × 3 Conv 2d 3 × 3 1 2 32 128 × 128 × 32 

128 × 128 × 32 Conv 2d 3 × 3 1 2 64 64 × 64 × 64 

64 × 64 × 64 GWHAM 1 2 128 32 × 32 × 128 

32 × 32 × 128 GWHAM 2 2 256 16 × 16 × 256 

16 × 16 × 256 GWHAM 2 2 512 8 × 8 × 512 

8 × 8 × 512 GWHAM 1 2 512 4 × 4 × 512 

4 × 4 × 512 Avgpool 1 - 512 1 × 1 × 512 

1 × 1 × 512 Dense 1 - 7 1 × 1 × 7 

3.3. Performance of the Proposed Model 

Table 4 details the performance of the proposed method on the four data sets with 

various training ratios. In order to verify the performance of the proposed method, the 

overall accuracy (OA), average accuracy (AA), kappa coefficient (kappa), and F1 score 

(F1) were adopted as evaluation indices for the experiments. The OA represents the 

percentage of correct classification in the test set; AA represents the ratio of the number 

of correctly predicted samples in each category to the total number of samples in the 

category; the F1 score is the weighted average of accuracy and recall, which is used to 

measure the robustness of the model, and the Kappa coefficient is used for consistency 

evaluation, in terms of whether the predicted results are consistent with the actual clas-

sification results. It can be seen from Table 4 that the OA and AA of the proposed 

method on the four data sets reached more than 90%, and the difference between the OA 

and AA was less than 1%, indicating that the proposed method has strong generaliza-

tion ability. The Kappa coefficient was more than 90%, which demonstrates that the pre-

dicted value obtained by the proposed method was almost consistent with the real val-

ue. The F1 value results also proved that the proposed method has strong robustness. 

Table 4. Performance Indices for the Proposed LCNN-GWHA Model on Four Datasets. 

Datasets OA (%) Kappa (%) AA (%) F1 (%) 

RSSCN7 97.78 97.42 97.70 97.71 

UCM21 99.76 99.75 99.49 99.52 

AID (50/50) 97.64 97.55 97.05 97.16 

AID (20/80) 93.85 93.63 93.60 93.67 

NWPU45 (20/80) 94.26 94.13 93.95 94.10 

NWPU45 (10/90) 92.24 92.04 92.15 92.20 

3.3.1. Experimental Results of the RSSCN7 Dataset 

The comparison results for the RSSCN7 dataset are shown in Table 5. In this da-

taset, the proportion of samples used for training was 50% of the total number of sam-

ples. The proposed method had 0.3 M parameters and 97.78% classification accuracy. It 

had the highest accuracy and the least number of parameters compared with all of the 

methods used for comparison. The OA of the proposed method was 2.57% higher than 

that of ADFF [32], 2.24% higher than that of Coutourlet CNN [33], and 3.07% higher 

than that of SE-MDPMNet [34]. The confusion matrix for the proposed method of the 

RSSCN7 dataset is shown in Figure 6. It can be seen from Figure 6 that the proposed 

method achieved 99% classification accuracy for ‘Forest’, ‘Parking’, and ‘RiverLake’ cat-

egories, indicating that these scenarios had high interclass differences and intraclass 

similarities. ‘Grass’ was a scenario with a minimum classification accuracy of 95%, some 

of which were incorrectly classified into ‘Forest’ and ‘Field’ scenarios, as the three sce-
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narios are similar and have small intraclass differences, resulting in the incorrect classi-

fication of grasslands. 

Table 5. Performance comparison of the proposed model with some advanced methods on the 

RSSCN7 dataset. 

Network Model OA (%) Number of Parameters 

VGG16+SVM Method [30] 87.18 130 M 

Variable-Weighted Multi-Fusion 

Method [35] 
89.1 - 

TSDFF Method [36] 92.37 ± 0.72 - 

ResNet+SPM-CRC Method [37] 93.86 23 M 

ResNet+WSPM-CRC Method 

[37] 
93.9 23 M 

LCNN-BFF Method [38] 94.64 ± 0.21 6.2 M 

ADFF [32] 95.21 ± 0.50 23 M 

Coutourlet CNN [33] 95.54 ± 0.17 12.6 M 

SE-MDPMNet [34] 94.71 ± 0.15 5.17 M 

Proposed Method 97.78 ± 0.12 0.3 M 

 

Figure 6. Confusion matrix of the proposed LCNN-GWHA method of the RSSCN7 Dataset (50/50). 

3.3.2. Experimental Results of the UCM21 Dataset 

The division proportion for the UCM21 dataset was set as training/test = 8:2, and 

the experimental results on the UCM21 dataset are shown in Table 6. It can be seen from 

Table 6 that the OAs of some methods on this dataset exceeded 99%. In this case, the 

number of parameters was an important evaluation index. The parameter amount of the 

proposed method was 0.31 M and, the classification accuracy was 99.76%, 5.89 M less 

than that of the LCNN-BFF method [38] parameters with 99.29% accuracy, and 21.69 M 

less than that of the Inceptionv3+CapsNet method [39] parameters with 99.05% accura-

cy. The proposed method achieves high classification accuracy while greatly reducing 

the number of parameters of the model. 
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Table 6. Performance Comparison of the Proposed Model with Some Advanced Methods on the 

UCM21 Dataset. 

Network Model OA(%) Number of Parameters 

Variable-Weighted Multi-Fusion [35] 97.79 - 

ResNet+WSPM-CRC [37] 97.95 23 M 

ADFF [32] 98.81 ± 0.51 23 M 

LCNN-BFF [38] 99.29 ± 0.24 6.2 M 

VGG16 with MSCP [40] 98.36 ± 0.58 - 

Gated Bidirectional+global feature [41] 98.57 ± 0.48 138 M 

Feature Aggregation CNN [42] 98.81 ± 0.24 130 M 

Skip-Connected CNN [43] 98.04 ± 0.23 6 M 

Discriminative CNN [44] 98.93 ± 0.10 130 M 

VGG16-DF [45] 98.97 130 M 

Scale-Free CNN [46] 99.05 ± 0.27 130 M 

Inceptionv3+CapsNet [39] 99.05 ± 0.24 22 M 

DDRL-AM [47] 99.05 ± 0.08 - 

Semi-Supervised Representation Learning 

[48] 
94.05 ± 1.2 210 M 

Multiple Resolution BlockFeature [49] 94.19 ± 1.5 - 

Siamese CNN[50] 94.29 - 

Siamese ResNet50 with R.D [51] 94.76 - 

Bidirectional Adaptive Feature Fusion [52] 95.48 130 M 

Multiscale CNN[53] 96.66 ± 0.90 60 M 

VGG_VD16 with SAFF [54] 97.02 ± 0.78 15 M 

Proposed Method 99.76 ± 0.25 0.3 M 

The confusion matrix of the proposed method on the UCM21 dataset with a train-

ing:test = 8:2 is shown in Figure 7. As can be seen from Figure 7, except for the ‘medi-

umresidential’ scene, all other scenes were fully recognized. This was because the two 

scenes ‘mediumresidential’ and ‘mobilehomepark’ were very similar in appearance, re-

sulting in confusion in classification. 

 

Figure 7. Confusion Matrix for the LCNN-GWHA Method on the UCM21 Dataset (80/20). 
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3.3.3. Experimental Results on the AID Dataset 

For the AID dataset, experiments were performed with training test = 2:8 and 

training test = 5:5, respectively. The experimental results are shown in Table 7. It can be 

seen that when the training ratio was 20%, our method achieved the best performance 

with the least parameters, and the classification accuracy reached 93.85%, which is 0.58% 

higher than that of Inception V3 [55], and 1.46% higher than that of ResNet50 [55]. When 

the training proportion was 50%, compared with the Discriminative CNN [44] method, 

the Inception V3 [55] method, and the Skip Connected CNN [43] method, the proposed 

method had great advantages in classification accuracy, with the amount of model pa-

rameters being only 0.2, 0.6, and 1.6% of the abovementioned methods, respectively. 

The confusion matrix for the proposed method on the AID dataset with training test 

= 5:5 is shown in Figure 8. The three scenarios of ‘Meadow, ‘Viaduct’ and ‘Sparse Resi-

dential’ achieved 100% correct classification. The lowest classification accuracy, for the 

‘industrial’ category, was 94%, as the ‘Industrial’ and ‘Commercial’ areas have similar 

architectural styles, resulting in some ‘Industrial’ scenes being incorrectly classified as 

‘Commercial’. Moreover, ‘Desert’ and ‘BareLand’ were also easily confused, as they 

have similar surface appearance, resulting in low classification accuracy for desert areas. 

Nevertheless, compared with other state-of-the-art classification methods, the proposed 

method still achieved higher classification accuracy. 

Table 7. Performance Comparison of the Proposed Model with Some Advanced Methods on the 

AID Dataset. 

Network Model OA (20/80) (%) OA (50/50) (%) 
Number of Pa-

rameters 

VGG16+CapsNet [39] 91.63 ± 0.19 94.74 ± 0.17 130 M 

VGG_VD16 with SAFF [54] 90.25 ± 0.29 93.83 ± 0.28 15 M 

Discriminative CNN[44] 90.82 ± 0.16 96.89 ± 0.10 130 M 

Fine-tuning [30] 86.59 ± 0.29 89.64 ± 0.36 130 M 

Skip-Connected CNN [43] 91.10 ± 0.15 93.30 ± 0.13 6 M 

LCNN-BFF [38] 91.66 ± 0.48 94.64 ± 0.16 6.2 M 

Gated Bidirectional [41] 90.16 ± 0.24 93.72 ± 0.34 18 M 

Gated Bidirectional+global fea-

ture [41] 
92.20 ± 0.23 95.48 ± 0.12 138 M 

TSDFF [36] - 91.8 - 

AlexNet with MSCP [40] 88.99 ± 0.38 92.36 ± 0.21 - 

VGG16 with MSCP [40] 91.52 ± 0.21 94.42 ± 0.17 - 

ResNet50 [55] 92.39 ± 0.15 94.69 ± 0.19 25.61 M 

InceptionV3 [55] 93.27 ± 0.17 95.07 ± 0.22 45.37 M 

Proposed Method 93.85 ± 0.16 97.64 ± 0.28 0.3 M 
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Figure 8. Confusion Matrix for the LCNN-GWHA Method on the AID (50/50) Dataset. 

3.3.4. Experimental Results on the NWPU45 Dataset 

For the NWPU45 dataset, experiments were carried out with training test = 2:8 and 

training test = 1:9, respectively. The experimental results are shown in Table 8. We can 

see that when the training proportion was 10%, the proposed method achieved 92.24% 

classification accuracy with 0.3 M parameters, which is 2.01% higher than that of LiG 

with RBF kernel [56] with 2.07 M parameters, 7.91% higher than that of Skip-Connected 

CNN [43] with 6 M parameters, and 5.71% higher than that of the LCNN-BFF method 

[38] with 6.2 M parameters. When the training proportion was 20%, the OA of the pro-

posed method was 94.26%, which is 1.01% higher than that of LiG with RBF kernel [56], 

2.37% higher than that of Discriminative with VGG16 [44], and 2.53% higher than that of 

the LCNN-BFF Method [38]. The experimental results demonstrate that the proposed 

method could extract more significant features with fewer parameters in datasets with 

rich image changes, as well as high similarity between classes and intra-class differences. 

Table 8. Performance Comparison of the Proposed Model with Some Advanced Methods on the 

NWPU45 Dataset. 

Network Model OA (10/90) (%) OA (20/80) (%) 
Number of Pa-

rameters 

R.D [51] - 91.03 - 

AlexNet with MSCP [40] 81.70 ± 0.23 85.58 ± 0.16 - 

VGG16 with MSCP [40] 85.33 ± 0.17 88.93 ± 0.14 - 

VGG_VD16 with SAFF [54] 84.38 ± 0.19 87.86 ± 0.14 15 M 

Fine-tuning [30] 87.15 ± 0.45 90.36 ± 0.18 130 M 

Skip-Connected CNN [43] 84.33 ± 0.19 87.30 ± 0.23 6 M 

LCNN-BFF [38] 86.53 ± 0.15 91.73 ± 0.17 6.2 M 

VGG16+CapsNet [39] 85.05 ± 0.13 89.18 ± 0.14 130 M 

Discriminative with AlexNet [44] 85.56 ± 0.20 87.24 ± 0.12 130 M 

Discriminative with VGG16 [44] 89.22 ± 0.50 91.89 ± 0.22 130 M 

ResNet50 [55] 86.23 ± 0.41 88.93 ± 0.12 25.61 M 

InceptionV3 [55] 85.46 ± 0.33 87.75 ± 0.43 45.37 M 

Contourlet CNN [33] 85.93 ± 0.51 89.57 ± 0.45 12.6 M 

LiG with RBF kernel [56] 90.23 ± 0.13 93.25 ± 0.12 2.07 M 

Proposed Method 92.24 ± 0.12 94.26 ± 0.25 0.31 M 
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The confusion matrix for the proposed method on the training test = 2:8 NWPU45 

dataset is shown in Figure 9. As the NWPU45 dataset has high intraclass dissimilarity 

and interclass similarity, none of the classes were completely correctly classified. How-

ever, there were 44 scenarios that achieved a classification accuracy of over 90%, and 

thus achieved good classification results. As shown in Figure 9, the worst accuracy sce-

narios were ‘church’ and ‘palace’ with accuracies of 90% and 89%, respectively, as they 

had very similar buildings, which caused confusion when classifying. In addition, the 

classification accuracy of ‘roundabout’ scenes was lower than 91%, as irregular intersec-

tions can easily be identified as ‘intersection’ scenes, resulting in incorrect classification. 

Nevertheless, the proposed method still gave good classification results for each scenar-

io. 

 

Figure 9. Confusion Matrix for the LCNN-GWHA Method on the NWPU45 (20/80) Dataset. 

3.4. Speed Comparison of Models 

To verify the advantage of our method in terms of speed, experiments were per-

formed on the UCM21 dataset using the ATT evaluation index. The ATT refers to the 

average training time required by a model to process an image. Because the results of 

ATT have a great relationship with the performance of the computer, other algorithms 

for comparison are rerun on the same computer. In order to reduce random effects, the 

average value of ten experiments is taken as the final result for each method. The ex-

perimental results of our method were compared with those of advanced methods, as 

detailed in Table 9. 

Table 9. ATT Comparison of the Proposed Model with Advanced Methods on UCM21 Datasets. 

Network Model Time Required to Process Each Image(s) 

Siamese ResNet_50 [51] 0.053 

Siamese AlexNet [51] 0.028 

Siamese VGG-16 [51] 0.039 

GBNet+global feature [41] 0.052 

GBNet [41] 0.048 

LCNN-BFF [38] 0.029 

Proposed Method 0.010 
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It can be seen that under the same experimental equipment, the proposed method 

took 0.010 s to process a remote sensing image, which was the shortest time compared 

with the other methods. It was 0.018 s faster than that the Siamese ALexNet [51] method 

and 0.019 s faster than that the LCNN-BFF [38] method. 

3.5. Comparison of Computational Complexity of Models 

The floating-point operations (FLOPs) evaluation index is used to measure the 

complexity of models. Experiments were performed on the AID dataset with a training 

proportion of 50%. The experimental results are shown in Table 10. It can be seen that 

both the OA and FLOPs of the proposed method were the best compared with those of 

the methods used for comparison. Compared with the lightweight network models, 

MobileNetv2 [34] and SE-MDPMNet [34], on the premise that the FLOPs value has great 

advantages, the classification accuracy of the proposed method was 1.68% and 0.5% 

higher than these methods, respectively, thus verifying that the proposed LCNN-GWHA 

method can achieve a good trade-off between classification accuracy and running speed. 

Table 10. Complexity Evaluation of some Models. 

Network Model OA (%) Number of Parameters FLOPs 

CaffeNet [30] 89.53 60.97 M 715 M 

VGG-VD-16 [30] 89.64 138.36 M 15.5 G 

GoogLeNet [30] 86.39 7 M 1.5 G 

MobileNetV2 [34] 95.96 3.5 M 334 M 

SE-MDPMNet [34] 97.14 5.17 M 3.27 G 

Proposed Method 97.64 0.31 M 12.6 M 

4. Discussion 

To the performance of the proposed LCNN-GWHA method more intuitively, three 

visualization methods were explored. The UCM21 dataset was selected for these ex-

periments. First, the channel attention, spatial attention, and mixed attention used in the 

LCNN-GWHA method were visualized, as shown in Figure 10. In Figure 10, different 

colors represent the degree of attention to the region, and where the yellow color repre-

sents a high degree of attention to the region. 
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Figure 10. Attention Visualization Results. 

From the visualization results in Figure 10, it can be seen that the points of interest 

under the different attention mechanisms were different, as well as the areas of en-

hancement. Channel attention enhanced the feature points of interest, while spatial at-

tention enhanced the background area of interest. For hybrid attention, this added spa-

tial attention on the basis of channel attention, which made it more active and allowed 

learning more meaningful features. Therefore, both the background area and feature 

points were enhanced at the same time. 

Next, class activation map (CAM) visualization was used to visualize the entire 

network feature extraction ability of the proposed LCNN-GWHA method. This method 

uses the gradient of any target and then generates a rough attention map from the last 

layer of the convolution network to show important areas in the image predicted by the 

model. Some images were randomly selected from the UCM21 dataset for visual analysis. 

The VGG_VD16 with SAFF method is adopted for CAM visual comparison with the 

proposed LCNN-GWHA method. The visual comparison results are shown in Figure 11. 

The LCNN-GWHA method can better cover important objects with a wide range of 

highlights. Especially for the ‘Tenniscourt’ scenario, the proposed LCNN-GWHA 

method perfectly covers the main target, while the coverage area of VGG_VD16 with 

SAFF method deviates severely, resulting in classification errors. This is because the 

LCNN-GWHA method proposed has strong target positioning and recognition ability 

due to the enhancement of features by hybrid attention. 
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Figure 11. Class activation map (CAM) visualization results of the LCNN-GWHA method and the 

VGG_VD16 with SAFF method on UCM21 dataset. 

In addition, some random classification experiments were conducted on the UCM21 

data set to further prove the effectiveness of the proposed LCNN-GWHA method. The 

experimental results are shown in Figure 12. We can see that the predictive confidence of 

the model exceeded 99%, and some of the individual cases reached 100%. This proves 

that the proposed LCNN-GWHA method could extract image features more effectively. 
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Figure 12. Random classification prediction results.  



Remote Sens. 2022, 14, 161 20 of 22 
 

 

5. Conclusions 

In this paper, we present a lightweight end-to-end convolutional neural network 

for remote sensing scene image classification that combines the advantages of channel 

attention, spatial attention, and channel grouping. Channel attention is introduced to 

enhance important features, spatial attention is introduced to enhance the regions of in-

terest, and the two kinds of attention are fused to generate a hybrid attention module 

with higher activation, which can extract more meaningful features. In order to make the 

proposed model lightweight, group-wise hybrid attention is proposed, and hybrid at-

tention is introduced into each group, which not only ensures high classification accu-

racy but also greatly reduces the computational complexity. Experiments were carried 

out on four data sets with various training ratios. The experimental results demonstrate 

that the proposed method is robust and has higher classification accuracy than 

state-of-the-art methods. In addition to spatial attention and channel attention, self 

-attention is another effective method to improve network performance. In future work, 

we will propose a more efficient lightweight convolutional neural network for remote 

sensing scene classification, based on the use of a self-attention mechanism. 

Author Contributions: Conceptualization, C.S.; data curation, C.S., X.Z. and J.S.; formal analysis, 

L.W.; methodology, C.S.; software, X.Z.; validation, C.S., X.Z. and J.S.; writing—original draft, 

X.Z.; writing—review & editing, C.S. and L.W. All authors have read and agreed to the published 

version of the manuscript. 

Funding: This research was funded in part by the Heilongjiang Science Foundation Project of 

China under Grant LH2021D022, in part by the National Natural Science Foundation of China 

(41701479, 62071084), and in part by the Fundamental Research Funds in Heilongjiang Provincial 

Universities of China under Grant 135509136. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data associated with this research are available online. The UC 

Merced dataset is available for download at http://weegee.vision.ucmerced.edu/datasets/landuse.html 

(accessed on 15 December 2021). RSCCN dataset is available for download at 

https://sites.google.com/site/qinzoucn/documents (accessed on 15 December 2021). NWPU dataset is 

available for download at http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html (accessed 

on 15 December 2021). AID dataset is available for download at https://captain-whu.github.io/AID/ 

(accessed on 15 December 2021). 

Acknowledgments: We would like to thank the handling editor and the anonymous reviewers for 

their careful reading and helpful remarks. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. 

Process. Syst. 2012, 25, 1097–1105. 

2. Toshev, A.; Szegedy, C. DeepPose: Human Pose Estimation via Deep Neural Networks. In Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1653–1660. 

3. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, Columbus, OH, USA, June 2015; pp. 3431–3440. 

4. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. 

Neural Inf. Process. Syst. 2015, 28, 91–99. 

5. Zheng, X.; Chen, X.; Lu, X.; Sun, B. Unsupervised Change Detection by Cross-Resolution Difference Learning. IEEE Trans. 

Geosci. Remote. Sens. 2021, 18, 1–16. 

6. Zheng, X.; Wang, B.; Du, X.; Lu, X. Mutual Attention Inception Network for Remote Sensing Visual Question Answering. 

IEEE Trans. Geosci. Remote. Sens. 2021, 18, 1–14. 

  



Remote Sens. 2022, 14, 161 21 of 22 
 

 

7. Luo, F.; Zou, Z.; Liu, J.; Lin, Z. Dimensionality reduction and classification of hyperspectral image via multi-structure unified 

discriminative embedding. IEEE Trans. Geosci. Remote Sens. 2021, 18, 1. https://doi.org/10.1109/tgrs.2021.3128764. 

8. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. 

9. 9. Luo, F.; Huang, H.; Ma, Z.; Liu, J. Semi-supervised Sparse Manifold Discriminative Analysis for Feature Extraction of Hy-

perspectral Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6197–6221. 

10. Luo, F.; Zhang, L.; Zhou, X.; Guo, T.; Cheng, Y.; Yin, T. Sparse-Adaptive Hypergraph Discriminant Analysis for Hyperspectral 

Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1082–1086. https://doi.org/10.1109/lgrs.2019.2936652. 

11. Zheng, X.; Gong, T.; Li, X.; Lu, X. Generalized Scene Classification From Small-Scale Datasets With Multitask Learning. IEEE 

Trans. Geosci. Remote. Sens. 2021, 18, 1–11. https://doi.org/10.1109/tgrs.2021.3116147. 

12. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. 

13. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the 14th European Con-

ference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016, pp. 630–645. 

https://doi.org/10.1007/978-3-319-46493-0_38. 

14. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, 

arXiv:1502.03167. 

15. Carreira, J.; Madeira, H.; Silva, J.G. Xception: A technique for the experimental evaluation of dependability in modern com-

puters. IEEE Trans. Softw. Eng. 1998, 24, 125–136. https://doi.org/10.1109/32.666826. 

16. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, M.; Andreetto, M.; Adam, H. Mobilenets: Efficient 

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. 

17. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted residuals and linear bottlenecks. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 

June 2018; pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474. 

18. Xie, S.N.; Girshick, R.; Dollar, P.; Tu, Z.W.; He, K.M. Aggregated Residual Transformations for Deep Neural Networks. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 

2017; pp. 5987–5995. https://doi.org/10.1109/CVPR.2017.634. 

19. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In 

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 

June 2018; p. 18326147. 

20. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflflenet v2: Practical guidelines for efficient cnn architecture design. arXiv 2018, 

arXiv:1807.11164. 

21. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. 

22. Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15-20 June 2019; pp. 510–519. 

23. Woo, S.; Park, J.; Lee, J.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 2018 European 

Conference on Computer Vision, Munich, Germany, 8–14 September 2018. 

24. Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene Classification With Recurrent Attention of VHR Remote Sensing Images. IEEE 

Trans. Geosci. Remote Sens. 2019, 57, 1155–1167. https://doi.org/10.1109/tgrs.2018.2864987. 

25. Tong, W.; Chen, W.; Han, W.; Li, X.; Wang, L. Channel-Attention-Based DenseNet Network for Remote Sensing Image Scene 

Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 4121–4132. https://doi.org/10.1109/jstars.2020.3009352. 

26. Yu, D.; Guo, H.; Xu, Q.; Lu, J.; Zhao, C.; Lin, Y. Hierarchical Attention and Bilinear Fusion for Remote Sensing Image Scene 

Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6372–6383. https://doi.org/10.1109/jstars.2020.3030257. 

27. Alhichri, H.; Alswayed, A.S.; Bazi, Y.; Ammour, N.; Alajlan, N.A. Classification of Remote Sensing Images Using Efficient-

Net-B3 CNN Model With Attention. IEEE Access 2021, 9, 14078–14094. https://doi.org/10.1109/access.2021.3051085. 

28. Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIG-

SPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 3–5 November 2010; 

pp. 270–279. 

29. Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep Learning Based Feature Selection for Remote Sensing Scene Classification. IEEE 

Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. 

30. Xia, G.-S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A Benchmark Data Set for Performance Evaluation 

of Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. 

  



Remote Sens. 2022, 14, 161 22 of 22 
 

 

31. Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE. 2017, 105, 

1865–1883. 

32. Li, B.; Su, W.; Wu, H.; Li, R.; Zhang, W.; Qin, W.; Zhang, S. Aggregated Deep Fisher Feature for VHR Remote Sensing Scene 

Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3508–3523. 

33. Liu, M.; Jiao, L.; Liu, X.; Li, L.; Liu, F.; Yang, S. C-CNN: Contourlet Convolutional Neural Networks. IEEE Trans. Neural Net-

works Learn. Syst. 2021, 32, 2636–2649. https://doi.org/10.1109/tnnls.2020.3007412. 

34. Zhang, B.; Zhang, Y.; Wang, S. A Lightweight and Discriminative Model for Remote Sensing Scene Classification With Multi-

dilation Pooling Module. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2636–2653. 

35. Zhao, F.; Mu, X.; Yang, Z.; Yi, Z. A novel two-stage scene classification model based on feature variable significance in 

high-resolution remote sensing. Geocarto Int. 2019, 35, 1–12. https://doi.org/10.1080/10106049.2019.1583772. 

36. Liu, Y.; Liu, Y.; Ding, L. Scene classification based on two-stage deep feature fusion. IEEE Geosci. Remote Sens. Lett. 2018, 15, 

183–186. 

37. Liu, B.-D.; Meng, J.; Xie, W.-Y.; Shao, S.; Li, Y.; Wang, Y. Weighted Spatial Pyramid Matching Collaborative Representation for 

Remote-Sensing-Image Scene Classification. Remote Sens. 2019, 11, 518. 

38. Shi, C.; Wang, T.; Wang, L. Branch Feature Fusion Convolution Network for Remote Sensing Scene Classification. IEEE J. Sel. 

Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5194–5210. https://doi.org/10.1109/jstars.2020.3018307. 

39. Zhang, W.; Tang, P.; Zhao, L. Remote sensing image scene classification using CNN-CapsNet. Remote Sens. 2019, 11, 494. 

40. He, N.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Remote Sensing Scene Classification Using Multilayer Stacked Covariance Pooling. 

IEEE Trans. Geosci. Remote. Sens. 2018, 56, 6899–6910. 

41. Sun, H.; Li, S.; Zheng, X.; Lu, X. Remote Sensing Scene Classification by Gated Bidirectional Network. IEEE Trans. Geosci. Re-

mote Sens. 2020, 58, 82–96. 

42. Lu, X.; Sun, H.; Zheng, X. A Feature Aggregation Convolutional Neural Network for Remote Sensing Scene Classification. 

IEEE Trans. Geosci. Remote Sens. 2019, 57, 7894–7906. 

43. He, N.; Fang, L.; Li, S.; Plaza, J.; Plaza, A. Skip-Connected Covariance Network for Remote Sensing Scene Classification. IEEE 

Trans. Neural Netw. Learn. Syst. 2019, 31, 1461–1474. 

44. Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Clas-

sification via Learning Discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. 

45. Boualleg, Y.; Farah, M.; Farah, I.R. Remote Sensing Scene Classification Using Convolutional Features and Deep Forest Classi-

fier. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1944–1948. 

46. Xie, J.; He, N.; Fang, L.; Plaza, A. Scale-Free Convolutional Neural Network for Remote Sensing Scene Classification. IEEE 

Trans. Geosci. Remote. Sens. 2019, 57, 6916–6928. 

47. Li, J.; Lin, D.; Wang, Y.; Xu, G.; Zhang, Y.; Ding, C.; Zhou, Y. Deep Discriminative Representation Learning with Attention 

Map for Scene Classification. Remote Sens. 2020, 12, 1366. 

48. Yan, P.; He, F.; Yang, Y.; Hu, F. Semi-Supervised Representation Learning for Remote Sensing Image Classification Based on 

Generative Adversarial Networks. IEEE Access 2020, 8, 54135–54144. 

49. Wang, C.; Lin, W.; Tang, P. Multiple resolution block feature for remote-sensing scene classification. Int. J. Remote. Sens. 2019, 

40, 6884–6904. 

50. Liu, X.; Zhou, Y.; Zhao, J.; Yao, R.; Liu, B.; Zheng, Y. Siamese Convolutional Neural Networks for Remote Sensing Scene Clas-

sification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1200–1204. 

51. Zhou, Y.; Liu, X.; Zhao, J.; Ma, D.; Yao, R.; Liu, B.; Zheng, Y. Remote sensing scene classification based on rotation-invariant 

feature learning and joint decision making. EURASIP J. Image Video Process. 2019, 2019, 3. 

52. Lu, X.; Ji, W.; Li, X.; Zheng, X. Bidirectional adaptive feature fusion for remote sensing scene classification. Neurocomputing 

2019, 328, 135–146. 

53. Liu, Y.; Zhong, Y.; Qin, Q. Scene Classification Based on Multiscale Convolutional Neural Network. IEEE Trans. Geosci. Re-

mote. Sens. 2018, 56, 7109–7121. 

54. Cao, R.; Fang, L.; Lu, T.; He, N. Self-Attention-Based Deep Feature Fusion for Remote Sensing Scene Classification. IEEE Ge-

osci. Remote Sens. Lett. 2021, 18, 43–47. https://doi.org/10.1109/lgrs.2020.2968550. 

55. Li, W.; Wang, Z.; Wang, Y.; Wu, J.; Wang, J.; Jia, Y.; Gui, G. Classification of High-Spatial-Resolution Remote Sensing Scenes 

Method Using Transfer Learning and Deep Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 

2020, 13, 1986–1995. https://doi.org/10.1109/jstars.2020.2988477. 

56. Xu, C.; Zhu, G.; Shu, J. A Lightweight Intrinsic Mean for Remote Sensing Classification With Lie Group Kernel Function. IEEE 

Geosci. Remote Sens. Lett. 2021, 18, 1741–1745. https://doi.org/10.1109/lgrs.2020.3007775. 



https://digital-camscanner.onelink.me/P3GL/l6mzfavk


https://digital-camscanner.onelink.me/P3GL/l6mzfavk


https://digital-camscanner.onelink.me/P3GL/l6mzfavk

